Ficha 6: ¿Cómo solucionamos problemas de la vida cotidiana empleando sistemas de ecuaciones lineales?
Evaluamos nuestros aprendizajes
Propósito
Establecemos datos y valores desconocidos que incluyen un sistema de ecuaciones lineales con dos incógnitas. Expresé lo que comprendido sobre la solución de un sistema de ecuaciones lineales. Seleccioné y combiné estrategias y justifiqué sobre las característicvas de la solución de un sistema de ecuaciones.
Resuelve los siguientes problemas en tu cuaderno o portafolio.
Una persona invierte en un producto una cantidad de dinero y obtiene un 5 % de beneficio. Por otra inversión en un segundo producto, logra un beneficio del 3,5 %. Si en total invirtió S/10 000 y los beneficios de la primera inversión superan en S/300 a los de la segunda,
¿cuánto dinero invirtió en cada producto?
EJEMPLO DE RESPUESTA:
Datos variables:
- Inversión primer producto: x
- Inversión segundo producto: y
- Beneficio primer producto: 0,05x
- Beneficio segundo producto: 0,035y
Se establece el siguiente sistema de ecuaciones:
x + y = 10 000 …(I)
0,05x = 0,035y + 300 …(II)
———————– Para despejar y en la ecuación (I):
x + y = 10 000
y = 10 000 – x
———————– Para despejar x en la ecuación (II):
0,05x = 0,035y + 300
0,05x = 0,035(10 000 ‒ x) + 300
0,05x = 350 ‒ 0,035x + 300
0,085x = 650
x = 650 / 0,085
x = 7647 soles
—————- reemplazar x en la ecuación (I)
y = 10 000 – x
y = 10 000 ‒ 7647
y = 2353 soles
Respuesta: La persona invirtió 7647 soles en el primer producto y 2353 soles en el segundo.